An optimization on pictogram identification for the road-sign recognition task using SVMs
نویسندگان
چکیده
Please cite this article in press as: S. Maldonado Comput. Vis. Image Understand. (2009), doi:10 Pattern recognition methods are used in the final stage of a traffic sign detection and recognition system, where the main objective is to categorize a detected sign. Support vector machines have been reported as a good method to achieve this main target due to their ability to provide good accuracy as well as being sparse methods. Nevertheless, for complete data sets of traffic signs the number of operations needed in the test phase is still large, whereas the accuracy needs to be improved. The objectives of this work are to propose pre-processing methods and improvements in support vector machines to increase the accuracy achieved while the number of support vectors, and thus the number of operations needed in the test phase, is reduced. Results show that with the proposed methods the accuracy is increased 3–5% with a reduction in the number of support vectors of 50–70%. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
A Novel Neural Network Based Method Developed for Digit Recognition Applied to Automatic Speed Sign Recognition
This Paper presents a new hybrid technique for digit recognition applied to the speed limit sign recognition task. The complete recognition system consists in the detection and recognition of the speed signs in RGB images. A pretreatment is applied to extract the pictogram from a detected circular road sign, and then the task discussed in this work is employed to recognize digit candidates. To ...
متن کاملAn Approach to the Recognition of Informational Traffic Signs Based on 2-D Homography and SVMs
A fast method for the recognition and classification of informational traffic signs is presented in this paper. The aim is to provide an efficient framework which could be easily used in inventory and guidance systems. The process consists of several steps which include image segmentation, sign detection and reorientation, and finally traffic sign recognition. In a first stage, a static HSI col...
متن کاملRoad sign detection and recognition using fuzzy artmap: A case study swedish speed-limit signs
In this paper, a novel approach is developed using Fuzzy ARTMAP Neural Networks to recognize and classify Swedish road and traffic signs. The Swedish Speed-Limit signs are selected as a case study, but the system can be applied to other signs. A new color detection and segmentation algorithm is presented in which the effects of shadows and highlights are eliminated. Images are taken by a digita...
متن کاملDetection and Recognition of Multi-language Traffic Sign Context by Intelligent Driver Assistance Systems
Design of a new intelligent driver assistance system based on traffic sign detection with Persian context is concerned in this paper. The primary aim of this system is to increase the precision of drivers in choosing their path with regard to traffic signs. To achieve this goal, a new framework that implements fuzzy logic was used to detect traffic signs in videos captured along a highway f...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 114 شماره
صفحات -
تاریخ انتشار 2010